Morse Flow Trees and Legendrian Contact Homology in 1-jet Spaces

نویسنده

  • TOBIAS EKHOLM
چکیده

Let L ⊂ J(M) be a Legendrian submanifold of the 1-jet space of a Riemannian n-manifold M . A correspondence is established between rigid flow trees in M determined by L and boundary punctured rigid pseudo-holomorphic disks in T ∗M , with boundary on the projection of L and asymptotic to the double points of this projection at punctures, provided n ≤ 2, or provided n > 2 and the front of L has only cusp edge singularities. This result, in particular, shows how to compute the Legendrian contact homology of L in terms of Morse theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Legendrian Contact Homology in P × R

A rigorous foundation for the contact homology of Legendrian submanifolds in a contact manifold of the form P × R, where P is an exact symplectic manifold, is established. The class of such contact manifolds includes 1-jet spaces of smooth manifolds. As an application, contact homology is used to provide (smooth) isotopy invariants of submanifolds of Rn and, more generally, invariants of self t...

متن کامل

Knot Contact Homology

The conormal lift of a linkK in R is a Legendrian submanifold ΛK in the unit cotangent bundle U R of R with contact structure equal to the kernel of the Liouville form. Knot contact homology, a topological link invariant of K, is defined as the Legendrian homology of ΛK , the homology of a differential graded algebra generated by Reeb chords whose differential counts holomorphic disks in the sy...

متن کامل

Isotopies of Legendrian 1-knots and Legendrian 2-tori

We construct a Legendrian 2-torus in the 1-jet space of S × R (or of R) from a loop of Legendrian knots in the 1-jet space of R. The differential graded algebra (DGA) for the Legendrian contact homology of the torus is explicitly computed in terms of the DGA of the knot and the monodromy operator of the loop. The contact homology of the torus is shown to depend only on the chain homotopy type o...

متن کامل

LEGENDRIAN SUBMANIFOLDS IN R2n+1 AND CONTACT HOMOLOGY

Contact homology for Legendrian submanifolds in standard contact (2n + 1)space is rigorously defined using moduli spaces of holomorphic disks with Lagrangian boundary conditions in complex n-space. The homology provides new invariants of Legendrian isotopy. These invariants show that the theory of Legendrian isotopy is very rich. For example, they detect infinite families of pairwise non-isotop...

متن کامل

THE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS IN R2n+1

We define the contact homology for Legendrian submanifolds in standard contact (2n + 1)-space using moduli spaces of holomorphic disks with Lagrangian boundary conditions in complex n-space. This homology provides new invariants of Legendrian isotopy which indicate that the theory of Legendrian isotopy is very rich. Indeed, in [4] the homology is used to detect infinite families of pairwise non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005